V Международная конференция «Триггерные эффекты в геосистемах» Москва, ИДГ РАН, 4-7 июня 2019 г.

Институт физики прочности и материаловедения СО РАН, Томск, Россия

А.А. Цуканов*, Е.В. Шилько, С.Г. Псахье

Структурные превращения нанозащемленной воды при высоких давлениях: потенциальный механизм триггерных эффектов в зонах субдукции

Сергей Григорьевич Псахье

ВЕЧНАЯ ПАМЯТЬ

Структура доклада

- I. Глубинный цикл воды
 - Супер-гидратированное состояние минералов
 - ТД условия в зоне холодной субдукции
 - Нано-ограниченная океаническая вода
- II. Описание модели
 - Структура слоистых гидроксидов металлов
 - Модельная система, граничные условия
 - Молекулярная динамика, силовое поле
 - Допущения и недостатки модели
- III. Результаты и обсуждение
 - Кристаллизация нано-ограниченной воды под давлением
 - Фазовые переходы, структура, свойства
 - δ-образное увеличение (скачки) сжимаемости воды
 - Потенциальный механизм триггерных эффектов
- IV. Заключение

Глубинный цикл воды

- Вода является одним из самых распространенных соединений верхних геосфер Земли – не только гидросферы и атмосферы, но и <u>земной коры</u>.
- Вода участвует в различных <u>геодинамических</u> процессах, происходящих в широком диапазоне глубин:
- Водные массы, захваченные пористыми минералами океанических отложений и океанической плиты, в процессе субдукции могут погружаться под край континентальной коры на большие глубины, достигая <u>верхней мантии</u> и <u>переходной зоны</u> (например, [Ohtani-2009]).

Глубинный цикл воды

Супер-гидратированное состояние минералов

- 1. Высокие давления порядка 10⁹-10¹⁰ Па, типичные для глубин десятковсотен километров, приводят к <u>уплотнению минералов</u> со значительным <u>уменьшением их пористости</u>.
- 2. В таких условиях формируются наноразмерные поры.
- 3. При экстремальных гигапаскальных давлениях может происходить

индуцированное давлением проникновение воды в гидрофильные

Angewandte 125 Chemie

<u>слоистые</u> материалы [Talyzin-2008].

В частности, под воздействием высокого давления молекулы воды интеркалируются в межслоевую область глинистых минералов, таких как <u>каолинит</u> (при ~2.7 ГПа) [Hwang-2017] и <u>гекторит натрия</u> (при ~1.7 ГПа) [You-2013], образуя <u>супер-</u> <u>гидратированные фазы</u> этих минералов.

Huijeong Hwang¹, Donghoon Seoung^{1,2,9}, Yongjae Lee^{1,3*}, Zhenxian Liu⁴, Hanns-Peter Liermann⁵, Hyunchae Cynn⁶, Thomas Vogt⁷, Chi-Chang Kao² and Ho-Kwang Mao^{3,8}

Постановка задачи

- Физические (механические) свойства минерала в «супергидратированном» состоянии определяются не только свойствами <u>матрицы</u> (скелета), но и свойствами (нано)защемленной воды.
- Поведение материи в ограниченном объеме (в частности, в состоянии с уменьшенной «эффективной размерностью» пространства) не тривиально и <u>значительно отличается</u> от материи в свободном/объемном состоянии.

Пример– Crystalline structure of nanoconfined Ar [lakovlev E., Zhilyaev P., & Akhatov I. (2017). Atomistic study of the solid state inside graphene nanobubbles. Scientific reports, 7(1), 17906.]

 «Структура определяет свойства» ~ Бутлеров А.М. => Свойства (нано)защемленной воды также определяются ее структурой – <u>структурой на молекулярном уровне</u>.

>> Мы исследовали на молекулярном уровне структуру и свойства воды в (нано)стесненном состоянии в модельном гидрофильном слоистом минерале в диапазоне давлений 0.1-10 ГПа.

Выбор модельного минерала

Группа слоистых гидроксидов металлов с **брусито**подобной структурой

- Слоистое строение пачка из параллельных нанолистов (нанослоев)
- Нанослои между собой связаны водородными связями
- На поверхности ОН-группы => гидрофильные
- Межслоевые галереи могут быть гидратированы

Общая химическая формула:

- Me^{II}(OH)₂, где Me^{II} двухвалентный металл
- Me^{II} = {Mg (брусит), Fe (белая ржавчина), Ni, Co, Mn, Cd и Ca}
 [Brindley-1984]

Строение каждого нанолиста: >> центральный атомный слой нанолиста – металл

Me^{II}(OH)₂

- Атомы лежат в одной плоскости
- Образуют «*треугольную»* сетку

 Параметр решетки *а* зависит от элемента Ме^{II} (~ от ионного радиуса металла)

Строение каждого нанолиста:

>> атомы О формируют два слоя – по слою с каждой стороны Ме

$Me^{II}(OH)_2$

 Координационное число атомов металла 6 (по три кислорода с двух сторон) => формируется октаэдр

 Связи О-Ме-О считаются ионными – то есть описываются кулоновским взаимодействием и силами Ван-дер-Ваальса

Строение каждого нанолиста:

>> внешние слои формируются протонами Н, ковалентно связанными с О

Me^{II}(OH)₂

 Гидроксидные группы образуют поверхность

• Связь О-Н – ковалентная

>> <u>Зависимость параметров решетки</u> *а* **и** *с* **от металла** (данные из [Oswald HR, Asper R (1977) Bivalent metal hydroxides, in Lieth RMA (ed), "Preparation and Crystal Growth of Materials with Layered Structures," Reidel Pub Co, Holland, pp 77-140]):

	Металл	a, Å (expt.)	Δ _a , %	<i>c</i> , Å
	Ni	3.117	-4.4%	4.595
	Mg	3.147	-3.5%	4.769
	Со	3.173	-2.7%	4.640
	Zn	3.194	-2.1%	4.714
	Fe	3.262	0	4.596
	Mn	3.316	+1.7%	4.732
	Cd	3.499	+7.3%	4.701
	Са	3.592*	+10.1%	4.906*

* = [Busing and Levy, 1957]

Структурная модель

 Структурная модель слоистого гидроксида построена на основе <u>экспериментальных</u> данных, полученных для дейтерированного гидроксида <u>двухвалентного железа Fe(II)</u> [Parise J.B., Marshall W.G., Smith R.I., Lutz H.D. Möller H.: The nuclear and magnetic structure of "white rust"—Fe(OH_{0.86}D_{0.14})₂. Am. Mineral. 85, 189–193 (2000)]:

		Temperature		
	10 K	150 K	300 K	=
a (Å)	3.25919(5)	3.26238(5)	3.26515(6)	
c (Å)	4.5765(1)	4.5822(1)	4.6013(1)	
z(0)	0.2234(1)	0.2226(1)	0.2213(2)	I HQ HQ
z(H)	0.4202(7)	0.4129(10)	0.4111(13)	
Occupancy (H)	0.857(2)	0.863(2)	0.864(2)	X OF OC
$\mu_{\rm Fe}/\mu_{\rm B}$	3.50(4)	_		UTTTTO A REAL
U _{iso} (Fe)†	0.22(1)	0.39(1)	0.73(2)	
$U_{iso}(O)^{\dagger}$	0.32(1)	0.45(1)	0.68(2)	
$U_{11}(H)^{+}$	4.13(8)	4.37(8)	5.32(11)	
$U_{33}(H)^{+}$	2.8(2)	4.0(2)	3.9(3)	\bigcirc
$U_{12}(H)^{+}$	2.07(4)	2.18(4)	2.66(6)	
U _{iso} (H)†	3.94(7)	4.31(8)	5.0(1)	

TABLE 1.	Selected	refined	parameters	for F	Fe(O	H _{0.86} OD _{0.1}	(4) ²
----------	----------	---------	------------	-------	------	-------------------------------------	------------------

Молекулярная динамика, силовое поле

- «Калибровка» МД силовых полей производится из <u>экспериментальных данных</u>, например, по колебательным спектрам молекул и или фазовым диаграммам, а также по результатам <u>квантовомеханических расчетов</u> (DFT или метод Хартри-Фока и др.).
- Для параметризации оксидов и гидроксидов металлов, глинистых минералов и др. существует силовое поле CLAYFF [Cygan-2004].
- Для воды мы использовали трехточечную модель TIP3P [Jorgensen-1983].

Молекулярная динамика, силовое поле

- Атомы представляются LJ частицами с парциальными электрическими зарядами
- Использовалась модификация «ClayFF+LJ_H» для совместимости с TIP3P моделью воды [Tsukanov-2016]

Атом	ε, ккал/моль	σ, Å	Q , э
Н (вода)	0.046	0.4000135	0.417
О (вода)	0.1521	3.150574	-0.834
Me(II)	9.0298e-07	5.264321	1.05
О (ОН)	0.1554	3.165541	-0.95
Н (ОН)	0.046*	0.4000135*	0.425

* были добавлены ненулевые параметры Леннарда-Джонса для гидроксидного водорода

Молекулярная динамика, силовое поле

Связь	k _b , ккал/(моль·Å²)	b _o , Å
О-Н (вода)	450.0	0.9572
О-Н (ОН)	554.1349	0.9630

Угол	k _γ , ккал/(моль∙градус²)	γ ₀ , °
Н-О-Н	30	104.52
Me-O-H	55	109.47

Модельная система и ГУ

• Слой воды <u>ограничен</u> с двух сторон нанолистами

• Недостатки модели

- Модель не учитывает деформацию минерала под давлением (кроме атомов водорода).
- Фиксированное количество молекул воды (N = 3.5) на элементарную ячейку минерала.
- Система рассмотрена только при температуре Т = 310 К.
- Рассмотрено только одноосное нагружение (вдоль нормали).

• Допущения модели

- Параметры TIP3P удовлетворительны для описания воды вплоть до давления 10 ГПа.
- Параметры силового поля CLAYFF (+ LJ для H) удовлетворительны для описания слоистых гидроксидов металлов при давлении до 10 ГПа.

РЕЗУЛЬТАТЫ

 Исследована структура и физические свойства наноограниченной воды в диапазоне давлений 0.1-10 ГПа

РЕЗУЛЬТАТЫ

• Изменения структуры прослеживаются и на РФР диаграммах:

Кристаллизация

- Точка Р1 ~ З ГПа (~80 км): кристаллизация воды под давлением
- MSD-анализ => оценка поведения коэффициента диффузии D: P < P1, D ~ 10⁻⁹-10⁻⁸ м²/с, (для объемной воды эксп. 2.299·10⁻⁹ м²/с [Holz-2000])
- Важно: при ~2.7 ГПа формируется супергидратированная фаза каолинита Al₂Si₂O₅(OH)₄·3H₂O по эксп.данным [Hwang-2017]

Фазовый переход ГПУ-ГЦК

- Точка Р2 ~ 6.7 ГПа (~200 км): вода из ГПУ упаковки переходит в ГЦК
- Важно: обе фазовые трансформации сопровождаются <u>δ-образным</u> возрастанием сжимаемости воды (вдоль Z) на 1.0-1.5 порядка!

Водородные связи

>> Важной количественной величиной, характеризующей структуру воды, является плотность (концентрация) водородных связей (не учитываются граничные

Водородные связи

 ГПУ упаковка, вероятно, способствует более выгодной ориентации молекул.
 С ростом давления вклад от Н-связей становится меньше вклада от LJ (преобладает отталкивание).

Общая картина

 δ-образное увеличение (скачки) сжимаемости воды влияют на механические свойства всего водонасыщенного минерала!

Заключение

- Выявленные условия и последовательность фазовых трансформаций нано-ограниченной воды в слоистых гидрофильных минералах рассмотренной группы Me^{II}(OH)₂ (Me^{II} = Mg, Zn, Co, Fe, Mn) дают новое понимание возможного влияния наноразмерных процессов на свойства и динамику водонасыщенных минералов на глубинах до ~300 км.
- Выявленные скачки сжимаемости нанозащемленной воды, соответствующие глубинам ~80 и ~200 км, могут проявляться в механическом поведении нагруженных водонасыщенных пород, в частности, могут быть триггером динамического разрыва и сопутствующих сейсмических эффектов.
- 3. Дальнейшими возможными шагами в теоретическом исследовании может быть улучшение модели, за счет:
 - 1. учета реальной зависимости Т от глубины в зонах холодной субдукции
 - 2. учета деформации минерала под давлением
 - 3. возможности изменения количества интеркалированных молекул воды
 - 4. рассмотрения различных групп минералов каолинит, смектит, Na-гектарит и других слоистых силикатов.

Благодарю за внимание

Authors gratefully acknowledge the financial support from the **Russian Science Foundation Grant No. 17-11-01232.** The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.