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1. Tectonic earthquakes are caused by displacement breaks (DB) at large distances along active faults 
(AF), which are the layers of thickness hF~100 m with strongly destructed (fissured) fluid-filled rocks, with 
dilatancy and microcracks interaction. Actually, large DBs occur in much thinner ultracataclastic layers of hu~1-
10 mm thickness. So, at hТ>>hF scales tectonic blocks (TB, zones outside AF) can be considered as continuous 
elastic (or elastic-viscous) media (EM), macrocracks can be considered as plane, and conditions inside AFs, 
regulating stick-slip processes, as boundary conditions at slip surface. For chains of TBs of LТ>>hT scale various 
models of chains of movement equations of point masses (EPM) are typically used, interacting one with another 
and with state parameters inside AF-DB, such as Barridge-Knopoff model with Rate&State friction laws, and 
others. The question arises: how far EPM solutions differ from exact solutions of corresponding initial-boundary 
value problems?  

2.  Let’s consider that EM inside TB is linear isotropic homogeneous flat and has only one component 
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(1)L  and (2)L are longitudinal and transverse velocities  and TB dimensions  (dimensionless t, (1)x , (2)x  measured 

in (1)τ , (1)L , (2)L ). One (1) leads to 6 equations 
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Chain of equations (3) (plus related equations resulting from external boundary conditions) is accurate, if 
one knows infinite number of initial values. If one knows only N0 initial values for each TB, then operators ( )k

njK  

must be presented as series to order 0( )( )Nk
nO r  in vicinities of N*N0 first exact eigenvalues, depending on external 

boundary conditions, most important of which are those at AF-DB boundaries, «switching» slip and stick modes 
and connecting DBs, the stresses at AF-DB, and other state parameters inside AF-DB. The resulting chain of 



shortened equations (3) also leads to accurate solutions for N*N0 values considered. Mass-averaged displacements 
only are considered in EPM models, so their solutions cannot be accurate for concrete boundary value problems. 
For instance, EPM models’ solutions with N0=2 have relative errors >=20% (!) for inner blocks.  

3. Consider one TB with (1) 0V ± = , then (1) 0u ≡  (=> (2) ( , )u u y t≡ ). Let 0u− ≡  and consider slip mode 

with ( )fV V W+ = , where pW a V u+≡ = −  , pV ~0.1-15 cm/year is given mean velocity of another side of AF. 
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  , where 

/ constk mΩ = = , (k and m – elasticity coefficient and mass),  have infinitely large errors (!!) when | | 1fγ → . 
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